P P SAVANI UNIVERSITY

Fourth Semester of B. Tech. Examination November 2022

SESH2051 Mathematical Methods for Computation

21.11.2022, Monday

Instructions:

Time: 01:00 p.m. To 03:30 p.m.

Maximum Marks: 60

Instr	uctions:			
	he question paper comprises of two sections.			
2. S	ection I and II must be attempted in separate answer sheets.			
3. M	lake suitable assumptions and draw neat figures wherever required			
4. U	se of scientific calculator is allowed.			
	SECTION - I		CO	В
	2000년 - 1 시간 12 12 12 14 14 14 14 12 14 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16			TL
Q-1	()) % Sili %.	[05]	2/3/	5
Q - 2	o and carrent thowing in a series RL circuit when a voltage	[05]	2/3	3/
	$v(t)=t$ is applied, is given by $iR+L\frac{di}{dt}=t, t\geq 0, i(0)=0$ where R and L are	11	-/-	4
	constants. Find the current $i(t)$ at time t .			
Q-3		FORT	0.10	
	undetermined coefficients.	[05]	2/3	5
	OR		0.10	
Q-3	Using the method of variation of parameters, solve $(D^2 - 2D + 2)y = e^x \tan x$.	FORT	2/3	
	$2D + 2D + 2D = e^{x} \tan x.$	[05]	2/3	3/
Q-4	Solve $y^2p - xyq = x(z - 2y)$.	FOET		5
Q-5		[05]	2/3	5
	z = f(x + at)(x - at).	[05]	2/3	3
Q-6	Find the Laplace transform of $f(t) = \{3t^5 - 2t^4 + 4e^{-5t}\}e^{2t}$.	[OF]		_
	2 140 30 .	[05]	2	5
	SECTION - II		co	В
Q-1	Find the half-range sine series of $f(x) = e^{ax}$ in the interval $(0, \pi)$.	[OF]		TL
	, (), and meet var (0, n).	[05]	6	3/
Q-2	Find Fourier cosine integral of given function $f(x) = e^{-kx}$ where $x > 0, k > 0$	[OF]	,	5
		[05]	6	3/
Q-3	Find the missing frequency distribution shown that the mean of the distribution is	[05]	1/4	5
	1.46.	[03]	1/4	2/
	X 0 1 2 3 4 5 Total			4
	Y 46 ? ? 25 10 5 200			
	OR 200			
Q-3	Calculate Pearson's Coefficient of correlation from the data given below:	roes.		
	$N = 10, \Sigma X = 140, \Sigma Y = 150, \Sigma (X - 10)^2 = 180, \Sigma (Y - 10)^2 = 215,$	[05]	1	4
	$\Sigma(X-10)(Y-10)=60.$			
Q-4	The number of bacterial cells (y) per unit volume in a culture at different hours	FOET		
	(x) is given below:	[05]	_1	4
	x 0 1 2 2 4 5 6 5 5			
	1 2 3 4 5 6 7 8 9			
	y 43 46 82 98 123 167 199 213 245 272			
	Calculate the regression line of y on x . Also, estimate y corresponding to $x = 15$			
	hours. Also, estimate y corresponding to $x = 15$			

Q-5 A factory has two machines A and B. Past records show that the machine A [05] 2/ produces 30% of the total output and the machine B, the remaining 70%. Machine $\,$ A produces 5% defective articles and Machine B produces 1% defective items. An item is drawn at random and found to be defective. What is the probability that it was produced (i) by the machine A (ii) by the machine B The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. [05] 5/ Find $P(X \le 1)$ Suppose P(X = 0) = 1 - P(X = 1). If E(X) = 3Var(X), find P(X = 0). (ii) ****** : Course Outcome Number BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create